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An experimental approach on dynamic Occlusal
Fingerprint Analysis to simulate use-wear
development and localisation on Palaeolithic
stone tools

Introduction
Since the origin of the genus Homo, stone tool-based technologies were an important component in the toolkit of past humans. Studying the evidence left on stone tools is one of
the key areas in archaeology for understanding the evolution of human behaviour. Information about the use of stone tools in the past is encoded in the wear patterns left on the
tool’s surface after its use. To decode this information, use-wear analysts investigate the mechanisms involved in the formation of diagnostic wear traces.

Occlusal Fingerprint Analysis (OFA)
Occlusal Fingerprint Analysis (OFA) is a well-established method in dental macrowear studies1 to simulate chewing actions and thus to locate and quantify kinematics on dental
wear facets (contact areas between opposing teeth). In this pilot study, we apply, for the first time, the OFA method to a set of experimentally produced stone tools. In this proof-of-
concept study, we investigate whether contact areas simulated from the software correspond to the use-wear traces we observe. The overarching goal is directed at building
expectations as to where wear traces should develop based on the morphology of stone tools and the type of action performed.

Controlled experiments
A series of second-generation mechanised cutting experiments2 with four experimental
sample sets was performed: Two samples had a standard, saw-cut morphology, while the
other two were knapped and retouched. One sample of each type was used on a synthetic
bone plate3 while the other was used to cut wood. All samples were scanned with a high-
resolution 3D scanner. The 3D scans are loaded into the OFA software and the trajectory,
identical to that of the experimental setup, is simulated. During this trajectory, OFA records
and quantifies all contact areas by collision detection algorithms occurring between the 3D
models of the tool and the contact material. In parallel, the experimentally produced micro
use-wear (i.e., polish) is documented with a digital, and an upright light microscope. Macro
use-wear (i.e., edge damage) is recorded by comparing the 3D scans from before and after
experimentation using a cloud mesh comparison software (CloudCompare).

Conclusions
This proof-of-concept study has demonstrated that the OFA method can be
used to predict where use-wear develops on stone tools depending on their
morphology and the action performed. By incorporating other types of raw-
and contact materials, this method will be further developed and prove
important for answering larger research questions. The OFA method for stone
stones can address questions on site formation processes because it
generates expectations for the location of use-wear traces, allowing
differentiation between traces from use and those from post-depositional
processes. In addition, this method may answer questions on tool
performance based on contact areas simulated in the software.

1 O. Kullmer/U Menz/L. Fiorenza 2020, Occlusal Fingerprint Analysis (OFA) reveals dental occlusal behavior in primate molars. In: T. Martin/W. von Koenigswald (Eds.), Mammalian Teeth – Form and Function (Munich) 25-43.
2 J. Marreriros/I. Calandra/W. Gneisinger/E. Paixão/A. Pedergnana/L. Schunk 2020, Rethinking Use-Wear Analysis and Experimentation as Applied to the Study of Past Hominin Tool Use. Journal of Paleolithic Archaeology 3, 475-502.
3 L. Schunk/W. Gneisinger/I. Calandra/J. Marreiros 2023, The role of artificial materials in experimental use-wear studies: A controlled proxy to understand use-wear polish formation. Journal of Archaeological Science: Report 47, 103737.
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Results
Experimentally produced use-wear (i.e., edge damage and polish) overlap 
with contact areas calculated in the OFA software. 

Figure 1 Edge damage on sample FLT8-1 (top left) and contact areas calculated in the OFA software (top right). Polish
and contact areas in OFA on sample FLT8-13 (middle) and FLT13-1 (bottom).
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Knapped blade Saw-cut flake
Wood 9.26 mm2 11.02 mm2

Bone 8.61 mm2 11.91 mm2

Table 1Maximum contact area on the tool across the OFA simulation.
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Sample sets and workflow

Saw-cut flakes cut the contact material throughout experimentation in a
more consistent manner compared to knapped blades, implying that tools
with a simpler geometry cut contact material in a more regular way.

In comparison to the knapped samples, these tools also correlate with
heightened contact areas in OFA, suggesting that for these tools, a larger
surface area is involved in the cutting process.
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Figure 2 Penetration depth of samples in their contact material throughout experimentation. Lines illustrate every 40th
cutting stroke of the whole experiment– the darker the shade, the higher the stroke number.
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